Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587174

RESUMO

The gastrointestinal tract is complex and consists of multiple organs with unique functions. Rare gene mutations can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous mutations in RFX6 presenting with duodenal mal-rotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived iPSCs from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and patient tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are critical for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.

2.
Cell Stem Cell ; 30(11): 1434-1451.e9, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922878

RESUMO

Most organs have tissue-resident immune cells. Human organoids lack these immune cells, which limits their utility in modeling many normal and disease processes. Here, we describe that pluripotent stem cell-derived human colonic organoids (HCOs) co-develop a diverse population of immune cells, including hemogenic endothelium (HE)-like cells and erythromyeloid progenitors that undergo stereotypical steps in differentiation, resulting in the generation of functional macrophages. HCO macrophages acquired a transcriptional signature resembling human fetal small and large intestine tissue-resident macrophages. HCO macrophages modulate cytokine secretion in response to pro- and anti-inflammatory signals and were able to phagocytose and mount a robust response to pathogenic bacteria. When transplanted into mice, HCO macrophages were maintained within the colonic organoid tissue, established a close association with the colonic epithelium, and were not displaced by the host bone-marrow-derived macrophages. These studies suggest that HE in HCOs gives rise to multipotent hematopoietic progenitors and functional tissue-resident macrophages.


Assuntos
Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas , Colo , Organoides , Macrófagos
3.
Adv Healthc Mater ; : e2302502, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37616035

RESUMO

Human organoids have the potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo. This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by the lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, these challenges are overcome by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing, and encapsulation techniques are demonstrated on a pillar plate, which is coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels are differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

4.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993405

RESUMO

Human organoids have potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo . This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, we overcome these challenges by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing and encapsulation techniques were demonstrated on a pillar plate, which was coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels were differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

5.
Cell Mol Gastroenterol Hepatol ; 15(6): 1293-1310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608902

RESUMO

BACKGROUND & AIMS: The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS: We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS: Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS: EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.


Assuntos
Células-Tronco Pluripotentes , Nicho de Células-Tronco , Camundongos , Humanos , Animais , Células Enteroendócrinas/metabolismo , Intestinos , Nutrientes , Mamíferos
6.
Cell Rep ; 41(7): 111641, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384107

RESUMO

Long-term impacts of diet have been well studied; however, the immediate response of the intestinal epithelium to a change in nutrients remains poorly understood. We use physiological metrics and single-cell transcriptomics to interrogate the intestinal epithelial cell response to a high-fat diet (HFD). Within 1 day of HFD exposure, mice exhibit altered whole-body physiology and increased intestinal epithelial proliferation. Single-cell transcriptional analysis on day 1 reveals a cell-stress response in intestinal crypts and a shift toward fatty acid metabolism. By 3 days of HFD, computational trajectory analysis suggests an emergence of progenitors, with a transcriptional profile shifting from secretory populations toward enterocytes. Furthermore, enterocytes upregulate lipid absorption genes and show increased lipid absorption in vivo over 7 days of HFD. These findings demonstrate the rapid intestinal epithelial response to a dietary change and help illustrate the essential ability of animals to adapt to shifting nutritional environments.


Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Adaptação Fisiológica , Lipídeos
7.
Stem Cell Reports ; 17(8): 1889-1902, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905739

RESUMO

A major technical limitation hindering the widespread adoption of human pluripotent stem cell (hPSC)-derived gastrointestinal (GI) organoid technologies is the need for de novo hPSC differentiation and dependence on spontaneous morphogenesis to produce detached spheroids. Here, we report a method for simple, reproducible, and scalable production of small intestinal organoids (HIOs) based on the aggregation of cryopreservable hPSC-derived mid-hindgut endoderm (MHE) monolayers. MHE aggregation eliminates variability in spontaneous spheroid production and generates HIOs that are comparable to those arising spontaneously. With a minor modification to the protocol, MHE can be cryopreserved, thawed, and aggregated, facilitating HIO production without de novo hPSC differentiation. Finally, aggregation can also be used to generate antral stomach organoids and colonic organoids. This improved method removes significant barriers to the implementation and successful use of hPSC-derived GI organoid technologies and provides a framework for improved dissemination and increased scalability of GI organoid production.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Endoderma , Humanos , Intestino Delgado
8.
Gastroenterology ; 163(4): 1053-1063.e7, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803312

RESUMO

BACKGROUND & AIMS: Two patients with homozygous mutations in PDX1 presented with pancreatic agenesis, chronic diarrhea, and poor weight gain, the causes of which were not identified through routine clinical testing. We aimed to perform a deep analysis of the stomach and intestine using organoids derived from induced pluripotent stem cells from PDX1188delC/188delC patients. METHODS: Gastric fundic, antral, and duodenal organoids were generated using induced pluripotent stem cell lines from a PDX1188delC/188delC patient and an isogenic induced pluripotent stem cell line where the PDX1 point mutation was corrected. RESULTS: Patient-derived PDX1188delC/188delC antral organoids exhibited an intestinal phenotype, whereas intestinal organoids underwent gastric metaplasia with significant reduction in enteroendocrine cells. This prompted a re-examination of gastric and intestinal biopsy specimens from both PDX1188delC/188delC patients, which recapitulated the organoid phenotypes. Moreover, antral biopsy specimens also showed increased parietal cells and lacked G cells, suggesting loss of antral identity. All organoid pathologies were reversed upon CRISPR-mediated correction of the mutation. CONCLUSIONS: These patients will now be monitored for the progression of metaplasia and gastrointestinal complications that might be related to the reduced gastric and intestinal endocrine cells. This study demonstrates the utility of organoids in diagnosing uncovered pathologies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metaplasia/metabolismo , Mutação , Organoides/metabolismo , Estômago
9.
Curr Opin Endocrinol Diabetes Obes ; 29(2): 169-176, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066539

RESUMO

PURPOSE OF REVIEW: The intestinal enteroendocrine cells (EECs) are specialized hormone-secreting cells that respond to both circulating and luminal cues. Collectively, EECs constitute the largest endocrine organ of the body and signal to a multitude of targets including locally to neighboring intestinal cells, enteric neurons, as well as systemically to other organs, such as the pancreas and brain. To accomplish their wide range of downstream signaling effects, EECs secrete multiple hormones; however, the mechanisms that influence EEC development in the embryo and differentiation in adults are not well defined. RECENT FINDINGS: This review highlights the recent discoveries in EEC differentiation and function while also discussing newly revealed roles of transcription factors and signaling networks involved in the allocation of EEC subtypes that were discovered using a combination of novel intestinal model systems and genetic sequencing. We also discuss the potential of these new experimental models that study the mechanisms regulating EEC function and development both to uncover novel therapeutic targets. SUMMARY: Several EEC hormones are being used to treat various metabolic disorders, such as type 2 diabetes and obesity. Therefore, understanding the signaling pathways and gene regulatory networks that facilitate EEC formation is paramount to the development of novel therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Diferenciação Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Enteroendócrinas/fisiologia , Hormônios , Humanos , Intestinos
10.
Cell Stem Cell ; 29(1): 36-51.e6, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34856121

RESUMO

Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Endoderma , Humanos , Crista Neural
11.
Nat Commun ; 11(1): 4791, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963229

RESUMO

The ability to absorb ingested nutrients is an essential function of all metazoans and utilizes a wide array of nutrient transporters found on the absorptive enterocytes of the small intestine. A unique population of patients has previously been identified with severe congenital malabsorptive diarrhea upon ingestion of any enteral nutrition. The intestines of these patients are macroscopically normal, but lack enteroendocrine cells (EECs), suggesting an essential role for this rare population of nutrient-sensing cells in regulating macronutrient absorption. Here, we use human and mouse models of EEC deficiency to identify an unappreciated role for the EEC hormone peptide YY in regulating ion-coupled absorption of glucose and dipeptides. We find that peptide YY is required in the small intestine to maintain normal electrophysiology in the presence of vasoactive intestinal polypeptide, a potent stimulator of ion secretion classically produced by enteric neurons. Administration of peptide YY to EEC-deficient mice restores normal electrophysiology, improves glucose and peptide absorption, diminishes diarrhea and rescues postnatal survival. These data suggest that peptide YY is a key regulator of macronutrient absorption in the small intestine and may be a viable therapeutic option to treat patients with electrolyte imbalance and nutrient malabsorption.


Assuntos
Células Enteroendócrinas/metabolismo , Absorção Intestinal/fisiologia , Transporte de Íons/fisiologia , Nutrientes/metabolismo , Animais , Enterócitos , Glucose/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Intestino Delgado , Intestinos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo YY , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Trocador 3 de Sódio-Hidrogênio , Água/metabolismo
12.
Adv Exp Med Biol ; 1288: 47-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31983055

RESUMO

Optogenetics have recently increased in popularity as tools to study behavior in response to the brain and how these trends relate back to a neuronal circuit. Additionally, the high demand for human cerebral tissue in research has led to the generation of a new model to investigate human brain development and disease. Human Pluripotent Stem Cells (hPSCs) have been previously used to recapitulate the development of several tissues such as intestine, stomach and liver and to model disease in a human context, recently new improvements have been made in the field of hPSC-derived brain organoids to better understand overall brain development but more specifically, to mimic inter-neuronal communication. This review aims to highlight the recent advances in these two separate approaches of brain research and to emphasize the need for overlap. These two novel approaches would combine the study of behavior along with the specific circuits required to produce the signals causing such behavior. This review is focused on the current state of the field, as well as the development of novel optogenetic technologies and their potential for current scientific study and potential therapeutic use.


Assuntos
Neurociências/métodos , Neurociências/tendências , Optogenética/métodos , Optogenética/tendências , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Doenças do Sistema Nervoso/terapia , Organoides/citologia , Organoides/fisiologia , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...